Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Rice (N Y) ; 16(1): 54, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052756

RESUMO

Phosphorus (P) and nitrogen (N) are essential macronutrients necessary for plant growth and development. OsPT4 is a high-affinity phosphate (Pi) transporter that has a positive impact on nutrient uptake and seed development. In this study, the expression patterns of different Pi transporter genes in germinating seeds were determined, and the relative expression of OsPT4 was induced in Pi-deficient seeds and gradually increased with the passage of germination time. The analysis of P, N, Pi, and amino acid concentrations in germinating seeds of OsPT4 mutants showed that the OsPT4 mutation caused P and N retention and a continuous reduction in multiple amino acid concentrations in germinating seeds. Transcriptome analysis and qRT-PCR results also indicated that the OsPT4 mutation inhibits the expression of genes related to P and N transportation and amino acid synthesis in germinating seeds. In addition, the paraffin section and TUNEL assay of OsPT4 mutant germinating seeds suggests that OsPT4 mutation causes programmed cell death (PCD) delayed in the aleurone layer and inhibition of leaf outgrowth. Moreover, we also found that OsPT4 was ubiquitinated by OsAIRP2, which is a C3HC4-type RING E3 Ub ligase. Our studies illustrate that OsPT4 plays a crucial role in P and N collaborative translocation and consumption in germinating seeds. It also provides a theoretical basis for the molecules and physiological mechanisms of P and N cross-talk under suppressed Pi uptake conditions.

3.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613553

RESUMO

Lipids are the essential components of the cell intracellular and plasma membranes. Sulfoquinovosyldiacylglycerol (SQDG) is a glycolipid; glycolipids can replace phospholipids in maintaining phosphate (Pi) homeostasis in plants which are undergoing Pi starvation. Sulfoquinovosyl diacylglycerol synthase 1 (OsSQD1) is a critical enzyme in the first step of catalyzation in the formation of SQDG in rice. In this study, the expression pattern of different zones in roots of OsSQD1 in response to different Pi conditions is examined, and it is found that OsSQD1 is highly expressed in lateral roots under Pi-sufficient and -deficient conditions. The root phenotype observation of different OsSQD1 transgenic lines suggests that the knockout/down of OsSQD1 inhibits the formation and growth of lateral roots under different Pi conditions. Additionally, the lipid concentrations in OsSQD1 transgenic line roots indicate that OsSQD1 knockout/down decreases the concentration of phospholipids and glycolipids in Pi-starved roots. The OsSQD1 mutation also changes the composition of different lipid species with different acyl chain lengths, mainly under Pi-deprived conditions. The relative transcript expression of genes relating to glycolipid synthesis and phospholipid degradation is estimated to help study the mechanism by which OsSQD1 exerts an influence on the alteration of lipid composition and concentration in Pi-starved roots. Moreover, in Pi-starved roots, the knockout of OsSQD1 decreases the unsaturated fatty acid content of phospholipids and glycolipids. To summarize, the present study demonstrates that OsSQD1 plays a key role in the maintenance of phospholipid and glycolipid composition in Pi-deprived rice roots, which may influence root growth and development under Pi-deprived conditions.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Fosfatos/metabolismo , Diglicerídeos/metabolismo , Glicolipídeos/metabolismo , Fosfolipídeos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Biotechnol Lett ; 43(3): 655-666, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33174145

RESUMO

Excessive application of chemical fertilizer and continuous cropping in plastic greenhouse resulted in soil quality decline. The decrease of soil C/N ratio and the imbalance of soil carbon pool structure have brought new challenges to soil health, crop yield and sustainable agricultural development. OBJECTIVES: The experiment was set up to explore the effect of modified biochar on soil bacterial community structure, and the correlation between soil environmental factors and bacterial community structure changes. Based on the plot experiment in the field, the effect of modified biochar was studied via high-throughput MiSeq sequencing. RESULTS: Compared with the control (CK), the modified biochar (T) significantly increased soil water content, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) content and the ratio of MBC and MBN by 7.92%, 24.58%, 2.07% and 18.95%. Diversity index analysis showed that the application of modified biochar significantly increased the Shannon index, ACE index and Chao1 index of the bacterial community by 3.05%, 5.07% and 5.24%. Compared with the control, the modified biochar decreased the relative abundance of Actinobacteriota and Chloroflex by 6.81% and 2.19%, and increased the relative abundance of Proteobacteria and Acidobacteriota by 7.34% and 12.52%. Correlation analysis shows that soil bulk density and water content may be important related factors that affect bacterial community structure. CONCLUSIONS: This study provides a theoretical basis for the directional control of modified biochar in the soil microecological environment in plastic greenhouse, which is conducive to healthy and sustainable farming.


Assuntos
Bactérias/efeitos dos fármacos , Carvão Vegetal/farmacologia , Microbiota/efeitos dos fármacos , Microbiologia do Solo , Biomassa , Carbono/análise , Carbono/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...